
CHAPTER 8
SOFTWARE

There are two areas in which software can influence the electromagnetic
compatibility (EMC) of a system or circuit. One is in the programming of
microprocessors or controllers in digital systems and the other is in the use of design
software to predict EMC performance. The fit of software into a book of this title
may seem odd, but at the code level the software can be considered as another
component in the system. At the design level there is little other than to review the
available software techniques that can be covered within the scope of this book.

The usefulness of changing certain aspects of program code can quite easily be
observed to improve the EMC performance of a circuit. The usefulness of some of
the design software available is more difficult to assess as it is often difficult to know
how something may have been done without the influence of the software.

8.1 Programming Issues for EMC

A program within a system, microcontroller or even a simple logic controller can
have an influence on both the immunity and emissions of a system. Immunity is
easiest to consider as many error checking and code validation routines already exist
to ensure that corrupted transmissions are not accepted. Hence many programmers
are already aware of the issues of software immunity, although they may not have
considered this as an EMC issue.

On the emissions side it is more likely to be a case of acknowledging the best
practices for addressing and operating the hardware from software codes. For
example, setting a UART to tristate from input, then to outputs may reduce the
transient power demand compared with a direct input to output change of state. This
is generally known as defensive programming.

Many techniques, as with the watchdog circuit (see below and the section on ICs),
do not actually improve emissions or immunity but simply provide a controlled
method of recovery. Techniques involving simple known recovery states are usually
less program intensive than performance improving techniques. The latter tend to
have a higher programming overhead (i.e. require more code to execute) and more
memory for storage.

161

162 EMC at Component and PCB Level

8.1.1 Watchdog Programming
When incorporating a watchdog circuit (see IC section) into a design, some
programming may be required for the timer reset of the watchdog. If possible the
code should poll the watchdog pin once per program cycle. This is not too much of
a problem with short microcontroller code or sequential routines, but with general
operation processors and long programs this may be difficult. There may therefore
need to be additional timed interrupts or hardware-generated interrupts to address the
watchdog (e.g. dedicated watchdog interrupt handling code, Figure 8.1).

Figure 8. I
Sequential watchdog resets

RESET WATCHDOG /

/ / RESET
WATCHDOG

RESET WATCHDOG /

The watchdog timer must be short enough to ensure non-catastrophic failure of the
circuit and long enough not to interfere with functionality of the program (durations
between 10 ms and 2 s are typical for watchdog timers). The trade-off in timing can
be difficult to gauge correctly for some coding. Processors with a Harvard bus
structure (independent data and instruction busses) are easier in this respect as each
instruction is known to require a single clock cycle; therefore code timing is simple,
count the instructions and divide by the clock frequency:

watchdog time out =
number of instruction cycles
watchdog clock frequency

8.1

Software 163

Another potential problem could occur if the watchdog code is not included within
the sleep cycle for those processors with low power sleep modes. When the
processor goes into sleep mode and the internal clock frequency is reduced, unless
the watchdog interrupt or poll function is similarly adjusted, a reset could be
implemented simply because the sleep mode was activated.

Watchdog programming has memory overhead as it requires additional program
routines or interrupts. This may not be possible with fixed ROM microcontrollers
and a hardware solution may be required. Likewise, in real time operating systems
(RTOS), interrupts or software-based polling may not be possible due to their effect
on program functionality. One simple hardware solution is to monitor lines that are
known to change frequently, such as the lowest order address or data line, and use
this for the watchdog polling line (Figure 8.2). The biggest problem here is ensuring
that these lines will always change with variable code and within the watchdog
timing regime. The advantage of hardware is that it requires no programming,
therefore less memory. The disadvantage is the increase in component count to
implement the function. It is most likely to cost more to implement the watchdog
function in software than in hardware, but code is generally the best implementation,
especially as a crashed program could continue to toggle the lines a hardware-based
watchdog system is monitoring.

CLOCK

MICROPROCESSOR

A D D R E S S
BUS

- A0

DATA
BUS

CLK

RESET I , DO

Figure 8.2
Hardware-generated watchdog interrupt

WATCHDOG TIMER

ESET Q

The most effective reset coding for a watchdog timer is to dedicate an output pin of the
microprocessor to the watchdog (Figure 8.3). This pin should be set and cleared
alternately as the program routines are executed (Figure 8.4). By using an AC coupled
watchdog set and reset, if the code loops within a single routine that includes a watchdog

164 EMC at Component and PCB Level

set command, the watchdog is still effective and this single port condition status will
operate the reset. This effectively doubles the robustness of the watchdog with only a
small code overhead (alternating port set and port clear commands).

MICROPROCESSOR

CLK <~

I/O

RESET

CLOCK

WATCHDOG TIMER
,, ,, ~ CLK Q

! RESET Q

Figure 8.3
AC coupled watchdog circuit

Figure 8.4
Watchdog set/reset routines

/ ~r
WATCHDOG /

RESET
WATCHDOG /

1 . 1 , 1

, WATCHDOG

I ROUTINE 16
I..,~
f

RESET
WATCHDOG

/

I

/

165

8.1.2 Refresh Port Connections
The data direction registers and the input/output port data registers are usually
located near the edge of the processor's package if included in the microprocessor
and may be connected directly to the external circuits. Consequently, these are highly
likely to have noise on their lines. A simple way of minimising this noise disturbing
the data settings and propagating into the microprocessor integrated circuit (IC) or
system is to refresh these registers regularly.

The action of the microprocessor rewriting these data registers stabilises the interfaced
circuits and minimises the risk that noise on these ports is corrupting other internal
registers. This is a simple task to perform regularly and involves minimal programming
overhead, just occasional write commands to the ports and data registers.

Some care does need exercising to ensure that writing the port status is appropriate
to the program activity at each re-write command. It can not be assumed that the
value in the port status is the correct setting so a read and then re-write could result
in enforcing an erroneous setting.

8.1.3 Polling Interface Ports (Oversampling)
Input and output to interfaced functions usually occurs at a much slower rate than the
microprocessor clock. This enables the microprocessor to poll these pins several
times to ensure that either the level is set for an output or that the incoming signal is
stable. This is analogous with the types of oversampling used in digital audio circuits
(e.g. CD players).

The microprocessor can be programmed with an oversampling scheme, either to
ignore the first and last and take the mean of a middle sample for instance, or simple
average. The actual scheme for polling can be left to the programmer and will
depend on the type of interface being addressed (e.g. audio, keyboard, serial data
link) and the processing rate.

This type of programming has a major software and run time overhead as it requires
several repeats of an operation plus usually some mathematical interpretation. The
result is an improved immunity to noisy input signals and less susceptible output
ports. This may best be implemented using a dedicated input/output microcontroller
with this type of software programmed on-chip rather than as an auxiliary program
for a main processor.

Dedicated input/output interface controllers are quite popular in larger systems hence
adding local code to improve the immunity should be relatively easy. The same code
could then be used for any system with that type of interface controller making the
immunity improvement portable to other systems.

8.1.4 Token Passing
Token passing is a deliberate method of ensuring the program is progressing in a
controlled manner and has not been jumped into due to a code corruption. This

166 EMC at Component and PCB Level

requires additional programming steps at each critical subroutine or program block
within the final program.

Token passing requires a token (value) to be either updated in memory or in a
register. As each routine is called it checks to ensure that the call is from the previous
set of code by comparing the token with a programmed value or memory location. If
a jump has occurred prematurely the token will not be set correctly, likewise if the
call has come from a random corruption the token will be in the wrong state. On the
discovery of a wrong token a reset routine is initiated.

The advantages of token passing over other methods are that the program
continuously looks for errors rather than waits for an error to occur and the token itself
can be used to reset to a predefined location in the program. It may not be necessary
to completely reset the system depending on the location of the error and the token
value, this obviously saves program time but also gives a genuine level of immunity
rather than a simple reset on error recovery. The extra programming overhead is in
adding the compare program to the start of each sub-routine and the token update to
the end, plus any error handling software control if system reset is to be avoided.

Code

...

:sub21

LDA

LDB

CMP

BNE

XXX

...

XXX

LDA

INC

STA

Comment

start of sub routine

&token load accumulator with token

&value load correct token value

compare token and value

#reset jump to reset routine if token incorrect

otherwise proceed with program

&token load token

increment token value for next routine

&token save token

:end sub21 end of sub routine program m

...

If attempting to use the token passing technique to recover to a known program
position more programming effort will be required and probably several tokens to
ensure register and flag conditions are suitable for re-entry into areas of code Using
the token value alone is insufficient to reset routines where register or memory writes
have occurred as these will most likely be incorrectly set.

8.1.5 Unused Memory Addresses
In most applications it is impossible to exactly fill all memory locations, either ROM
or RAM. These locations could be accessed due to a software or hardware addressing
error caused by a corrupted code. These unused memory locations should therefore
have a known operation placed in them, usually either a no operation (NOP) or an
unconditional jump to a reset routine (JMP RESET).

So o e 167

Address Code

0000 XXX

...

00 FA XXX

00FB NOP

00FC NOP

�9 . .

010F JMP RESET

0110 XXX

�9 . .

Comment

functional program area

end of program area

start of unused memory block

jump to reset routine

functional program area

Where blocks of memory are unused, the jump to reset should be at the bottom of the
memory with no operation commands above. These blocks may be scattered about the
ROM/RAM locations and need to be carefully mapped if this type of feature is to be used.

Writing these areas will be required by the initialisation program if they are in RAM
locations. There is of course the possibility that a corrupted write code could rewrite
these NOP instructions in the RAM space, similarly with the program itself, but it is
impossible to program for all eventualities and a reasonable trade between
effectiveness and efficiency of programming has to be drawn.

This technique requires only a small amount of additional programming to the start-
up (boot) routine and should not require any run-time program overhead.

8.1.6 Code Ghosting
This is one of the most memory intensive and possibly expensive techniques, usually
reserved for fault tolerant software. The technique requires each code or data value
to be stored in two parallel locations (either in identical or in complement form). The
code or data are then compared with their ghost value prior to use.

The potential for electromagnetic interference (EMI) causing both codes to be
corrupted is extremely low; however, the microprocessor still has no way of knowing
which of the two codes is correct and which corrupt. The microprocessor would have
to handle a code mismatch by reloading to check if the error was in the load
operation or abort to a known routine if the error is in the stored memory values.

Code

...

: sub32

LDA

LDB

CMP

BNE

XXX

...

Comment

&code

&ghost

#error

start of sub routine

load accumulator with code value

load ghost value

compare value and ghost

jump to error routine if values do not match

otherwise proceed with program

This method is a hardware implementation of the oversampling technique and could
be extended if necessary, although at some cost if there is a lot of code (i.e. three or

168 EMC at Component and PCB Level

four copies could be used for comparison). If multiple ghost values are used a
mathematical method of selecting the correct value could be applied (e.g. numerical
digital average of each bit). The method can also be selectively applied to code or
data values from a known problematic location or EMC critical area of the system or
program.

8.1.7 Other Techniques
There are other techniques that are more specific to the hardware being used and the
best methods of operating interfaces and associated circuits. For example the
interface with a tristate setting mentioned in the first part of this section. If a setting
of the port from logical outputs to inputs causes a large switch in internal states of
an IC, resulting in a large current demand, but an intermediate state is available that
has only a fraction of the transient current demand when switched (Figure 8.5).
Using the intermediate state between transitions requires only one additional code
instruction and will reduce transient supply demand and hence conducted noise
levels.

l-

~J

Q.

o'J

L

o

INPUT I OUTPUT

I ,,
iv-

time

I I
I I

INPUT I TRI -STATE I O U T P U T
I I

t ime

Figure 8.5
Effect of port status changes on supply current

The intermediate state transition technique may be applicable to other circuits, such
as clearing selective flags prior to rewriting may save the number of actual data or
address lines driven and therefore again reduce transient demand. Actual transient
savings in many circuits will be negligible and the idea is best reserved for those
functions which are known to require larger current supply (e.g. line drivers,
interface circuits and bi-directional ports).

Another technique that can help with interfaces is to use a coding scheme, such as
Manchester coding, which has only a few frequencies in the transmission. In
Manchester coding only two frequencies are used, a '1' is indicated by a single
transition and a '0' by a double transition within the clock cycle (Figure 8.6). The
signal is therefore always changing state, hence a latched condition or end of

Sof tware 1 6 9

transmission are also easy to detect. The receiving circuit can potentially determine
if the sender is experiencing EMC problems. With standard non-return to zero (NRZ)
coding the frequencies present in the transmission can be from the clock frequency
to whatever the maximum bit code length period is (i.e. 1/8 the clock frequency for
an eight-bit code, Figure 8.7).

Bitstream Frequency

c,oc. I I I I ! l I I

'1' stream f~k

'0' stream

Figure 8.6
Manchester code

2fc~k

Manchester coding makes filtering easier, if required, and allows for a simpler
method of triggering on levels rather than edges that will also improve immunity.
The clock of the transmission circuit is derivable from the signal hence, using a fixed
offset delay, a level triggered receive circuit is easy to implement in either software
(using a delay routine) or in hardware (using a delay line).

Converting standard edge triggered circuits to level triggered is possible at specific
ports by using a software code delay to allow the value to settle prior to reading. The

1 0 1 0 "--~ 0 ,loi ,lo
8-bit NRZ Code: transmission frequency = fclk

oF

Figure 8.7
NRZ coding

1 1 1 1 1 1 1 1

8-bit NRZ Code: transmission frequency = fcik/8

170 EMC at Component and PCB Level

length of delay will depend on the function, but should allow the ringing or
overshoot to settle and consequently not affect the value read at the port (Figure 8.8),
a typical settling time should be 10% of the maximum clock period. This can also be
implemented in hardware using a delayed latch trigger with the data ready signal
coming from the delayed latch set condition (Figure 8.9).

Figure 8.8
Software delayed port read

Is"'""-"/,.o,,.,
,I,

I ,:,,:,.,,,'-',Om,, I

/ . ,.PoT /
PORT VALUE

I

O I '~.~U_L_ ~ O

Figure 8.9
Hardware delayed signal

[
DELAY

8.2 Design Software

Software tools for design for EMC tends to fall into two distinct categories of program,
one is the simulator the other the advisor. The simulator attempts to predict precise
values of field or conducted noise at any chosen point in a circuit system or structure.
The advisor usually consists of a knowledge base and is applied to an otherwise
complete design to check its compliance with the rules of the knowledge base.

The effectiveness of the software is difficult to gauge accurately without comparison
with measured results and unfortunately little comparative testing with finished

Software 171

circuits is recorded. Most of the packages currently available concentrate on the
physical side of circuit design, being concerned with the dimensional construction of
PCBs and component packages. To date simulation of circuit behaviour and
component performance is still performed where possible on existing standard
circuit simulators (e.g. SPICE).

8.2.1 PCB Design Software
PCB design software is available from a bewildering number of suppliers with a long
list of various features of each package to differentiate it from its rivals. This is
usually one area of design that is almost exclusively done by computer, even the
simplest of circuits, designed on the back of an envelope, bread boarded rather than
simulated, is still usually laid out for production in a PCB design package.

The PCB design software does allow the designer to control more of the EMC
performance than component selection, as the designer can choose the dimensions of
interconnect, the number of layers present and their use. One feature that is now
prevalent on PCB design packages that is a potential problem for EMC is the auto-
router. The PCB design software does not necessarily know which are the fastest
signals and therefore which require priority in the layout, consequently initial clock
and high speed tracking may have to be done manually with the auto-router used
only for the bias components, low speed and DC tracks.

The major thrust for advisor type software for EMC is in the area of PCB design and
these can often operate on prelaid designs and give an indication of likely problem

Figure 8.10
EMC Advisor Analysis Software System from Zuken-Redac

172 EMC at Component and PCB Level

areas. Often the advisor may need some considerable input from the user to establish
some rules of layout specific to the user's applications. The amount of input can be
tedious and many advisor programs are little more than an additional design rule
checker (DRC) added to the existing DRC program. In fact if your PCB software has
an edit function for its DRC it is possible to create your own EMC advisor.

Simulation software at the PCB level takes the physical dimensions of the tracks and
interconnect (again coupled with data on the PCB material, see Appendix B) to
construct a transmission line model or aerial model for interconnect. This usually then
requires the component model data to produce some idea of likely delays, propagation
characteristics, termination values, etc. to predict if the layout will cause functional
problems (usually determined by signal integrity) or EMC problems. Usually, the
software is a conventional circuit simulator (electrical for conducted noise and
electromagnetic (EM) for radiation) and the PCB data are extracted from a PCB
layout package to produce the relevant interconnect models only. This, therefore, can
require integration of software packages: a PCB layout package, a PCB interconnect
model extraction tool, a circuit simulator and EM radiation modelling package.

As with any simulation the result is only as good as the models allow. In other words
the data on the PCB characteristics and dimensions have to be accurate for the
supplier you use. Another problem with this type of simulation is the time required
for extraction and analysis. Consider a small PCB with 10 ICs in 14-pin packages,
there are at least 140 interconnections as well as the components to simulate.
Consequently, these simulation models can usually only be run on the few critical
interconnects to check integrity and functionality within a reasonable simulation
time, especially if the radiation is being examined.

The above simulator arguments generally apply to predicting emissions for which some
models do exist. The susceptibility is, however, much more difficult, little component
data are available and the EM software is highly complex for such tasks. In general, the
assumption that low emission designs offer low susceptibility is usually used.

8.2.2 Component Simulation Software
At the component level electrical circuit simulators have been available for a long time
and several de facto standard packages exist. For electrical simulation of analogue
circuits SPICE has gained a wide acceptance and many examples of its accuracy exist
as do many models of passive, discrete and integrated components. Digital circuit
simulators are also common, but do not lend themselves to encompass the possibility
of noise analysis for EMC as an analogue simulator does. Consequently, extensions to
digital circuits to allow them to interface to analogue or mixed mode simulators is now
a relatively common theme, also digital models in SPICE are available.

The main problems are that the EMC performance is often outside the normal
operating range of the components, and hence their model. Some models do exist but
component packaging models and interconnect (see section on PCB software) also
have a significant effect on the EMC performance and models for these are not quite
as common.

Software 173

An area in which component simulation lacks behind PCB simulation is in emissions
modelling. The component package is not usually within the control of the circuit
designer, they require the device's function not its package. Consequently, unless the
component supplier can provide package data (dimensions of tracking and bonding
as well as electrical parasitics), modelling emissions from components is not feasible
for a component user. Even the supplier will experience difficulty and the use of any
model derived would be very limited as few people are attempting this level of
modelling or have the time or facilities to do so. The EM software that can perform
this level of modelling is expensive and requires some expertise to operate and a
significant computing performance from its host platform.

An emerging modelling standard that will assist in the conducted emissions
simulation is IBIS (Input/output Buffer Information Specification), which includes
package electrical parasitic data and rise and fall time information. The device
models are relatively basic in their functional performance within the IC, but give
reasonably detailed information of the behaviour of the signals at the pins of the
device. The models offer one of the best solutions to mixed signal simulations as
well as offering possible EMC simulation data and without compromising the IC
manufacturers' circuit details. As with any model there are limitations, and therefore
due to the simplicity of the model it is unlikely to predict accurately reaction to
incident phenomena, such as high frequency conducted input noise signals or
accurately model transients impact behaviour (although some transient absorption
models are included in some devices) and EM emissions are not modelled.

8.2.3 Design Software Overview
There is still a gap between component and PCB design software, although both are
commonly used by circuit designers, they are considered disparate operations in the
design cycle. If software is going to be used to predict circuit level EMC
performance it is going to have to link the component, circuit and PCB information.

Some software vendors are offering the possibility of taking PCB files and adding
models to a circuit simulator to model interconnect. There does need to be some
feedback if the PCB layout is then going to determine which tracks carry the highest
speed signals, therefore which to prioritise for layout. The simulator link approach
requires collaboration between simulation and PCB CAD vendors, this is already
occurring as the ECAD vendor base reduces by merger and acquisition. The main
drawback with simulator linked PCB layout software is the cost and complexity of
linking these packages together; each has a primary function which is not necessarily
compatible with the others'. This applies to both the analogue and digital circuit
simulators currently available as well as PCB layout packages.

Another consideration for the ECAD supplier is are designers willing to pay for
EMC add-ons to their software and are they willing to trust the results? No original
equipment manufacturer (OEM) would go to market with a product simulation and
no test data. As testing will still be required the value of a simulation tool will be
based on a trade-off between convenience, accuracy and of course cost.

174 EMC at Componen t and PCB Level

The value of simulation should be in reducing the design time. This requires the
correct set of design rules and models within the simulator and the correct
application to both circuits and systems. As in the early days of analogue and digital
simulations, the loop closing the simulation versus measured performance still needs
completing for EM software to enable designers to believe in the results the software
provides. This is being performed and the software is continually being refined.
Eventually the simulation will provide adequate information on EMC performance
and tests will be performed solely as verification rather than an iterative process in
the design cycle.

8.2.4 Available Commercial Packages
The following tables (Tables 8.1-8.4) list some of the available software packages
aimed at EMC simulation or modelling. There are no doubt others that offer various
features and new packages are appearing each year. There is no best solution as it
will depend upon many factors, not least of all the price of the software.

Table 8.1 Advisor-based software

Product name
, ,

Design Advisor
Supplier

Zuken-Redac
Application
PCB DRC

EMC Expert Consultant Seaward Ltd General
EMC Toolkit Continental Compliance General

, ,

UniCAD
, ,

UniSolve
, ,

PCB DRC

Table 8.2 Conducted emissions modelling software

Product name Supplier

e m

EMA3D

EMC Workbench
EMIT

Greenfield 2D

L-Edit/EM

Maxwell Strata

Micro Stripes

Sonnet Software

Electro Magnetic
Applications

Incases
Altium

Quantic Laboratories

Tanner Research

Ansoft

Kimberley
Communication
Consultants Ltd

Method

MOM

FDTD

TLM/MOM
MOM/FDTD

TLM

BEM

Superstar Eagleware

MOM

TLM

Application
circuits

semiconductors
3D structures

PCB design
conductors

signal integrity
PCB design
PCB layout

signal integrity,
cross-talk

3S structures
antennas

Motive Quad Design TLM PCB layout
TLM PCB design

Software 1 7 5

Table 8.3 Radiated emissions modelling software
Product name

ContecRADIA

Greenfield 3D

MAFIA

Maxwell SI
Eminance

Supplier
Contec

Microelectronics

Quantic Laboratories

Computer Systems
Technologies

Ansoft

Method
Antenna

Mathematics

BEM

FDTD.

FEM

Application
PCB traces, wires

and structures
3D structures and

PCB traces

3D structures

3D structures

Momentum HP-EEsof MOM planar structures

FEM

MOM

MSC/EMAS

QUIET

MacNeal-Schwendler
Corporation

Quad Design

3D structures,
antennas, EMI and

cross-talk
Any 2D and 3D

structures

Table 8.4 General electromagnetic modelling software
Product name Supplier

HFSS HP-EEsof
Method

FEM
Application
3D structures

Maxwell Eminence Ansoft FEM 3D structures
Integrated

Engineering
Software

Vector Fields

OERSTED BEM

FEM TOSCA

time harmonic
electromagnetic

fields
3D structures

There are many ways to handle EM simulation, the most complex is the finite
element method (FEM) which is commonly used in mechanical stress design
software. The EM versions solve Maxwell's equations in space along a grid or mesh
either defined by the user or by the software. FEM is arguably the most accurate
method but also the most computationally intensive and the most expensive. FEM
can be difficult to use but is very versatile and can be applied to almost any
structure. The boundary element method (BEM) is similar but deals with boundary
and space conditions rather than within finite elements of a grid, it is therefore a
little faster and of similar accuracy to FEM. The transmission line matrix (TLM) is
one of the faster methods that attempts to create two- or three-dimensional
transmission lines in space and calculate fields at various points based on
transmission line equations. The TLM method is fast but not as accurate as B EM or
FEM for radiated emissions.

Other methods exist for solving the radiated fields or conducted noise within circuits
and structures. They all offer some feature that makes them different from the next,
but usually each has a trade-off in speed, price, accuracy and versatility. Although
FEM seems the 'best' solution, there are certain applications where the other

176 EMC at Component and PCB Level

techniques can yield results of similar accuracy with faster computation times and at
a lower cost in both software and in time spent on the model construction. For
arbitrary geometries and non-linear materials FEM may be the only suitable method.
As with any simulator, their accuracy ultimately lies with the accuracy of the models
contained within the software or constructed by the user.

A list of the software vendor addresses is given in Appendix C.

