
CHAPTER 8 
SOFTWARE 

There are two areas in which software can influence the electromagnetic 
compatibility (EMC) of a system or circuit. One is in the programming of 
microprocessors or controllers in digital systems and the other is in the use of design 
software to predict EMC performance. The fit of software into a book of this title 
may seem odd, but at the code level the software can be considered as another 
component in the system. At the design level there is little other than to review the 
available software techniques that can be covered within the scope of this book. 

The usefulness of changing certain aspects of program code can quite easily be 
observed to improve the EMC performance of a circuit. The usefulness of some of 
the design software available is more difficult to assess as it is often difficult to know 
how something may have been done without the influence of the software. 

8.1 Programming Issues for EMC 

A program within a system, microcontroller or even a simple logic controller can 
have an influence on both the immunity and emissions of a system. Immunity is 
easiest to consider as many error checking and code validation routines already exist 
to ensure that corrupted transmissions are not accepted. Hence many programmers 
are already aware of the issues of software immunity, although they may not have 
considered this as an EMC issue. 

On the emissions side it is more likely to be a case of acknowledging the best 
practices for addressing and operating the hardware from software codes. For 
example, setting a UART to tristate from input, then to outputs may reduce the 
transient power demand compared with a direct input to output change of state. This 
is generally known as defensive programming. 

Many techniques, as with the watchdog circuit (see below and the section on ICs), 
do not actually improve emissions or immunity but simply provide a controlled 
method of recovery. Techniques involving simple known recovery states are usually 
less program intensive than performance improving techniques. The latter tend to 
have a higher programming overhead (i.e. require more code to execute) and more 
memory for storage. 
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8.1.1 Watchdog Programming 
When incorporating a watchdog circuit (see IC section) into a design, some 
programming may be required for the timer reset of the watchdog. If possible the 
code should poll the watchdog pin once per program cycle. This is not too much of 
a problem with short microcontroller code or sequential routines, but with general 
operation processors and long programs this may be difficult. There may therefore 
need to be additional timed interrupts or hardware-generated interrupts to address the 
watchdog (e.g. dedicated watchdog interrupt handling code, Figure 8.1). 

Figure 8. I 
Sequential watchdog resets 
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The watchdog timer must be short enough to ensure non-catastrophic failure of the 
circuit and long enough not to interfere with functionality of the program (durations 
between 10 ms and 2 s are typical for watchdog timers). The trade-off in timing can 
be difficult to gauge correctly for some coding. Processors with a Harvard bus 
structure (independent data and instruction busses) are easier in this respect as each 
instruction is known to require a single clock cycle; therefore code timing is simple, 
count the instructions and divide by the clock frequency: 

watchdog time out = 
number of instruction cycles 
watchdog clock frequency 

8.1 
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Another potential problem could occur if the watchdog code is not included within 
the sleep cycle for those processors with low power sleep modes. When the 
processor goes into sleep mode and the internal clock frequency is reduced, unless 
the watchdog interrupt or poll function is similarly adjusted, a reset could be 
implemented simply because the sleep mode was activated. 

Watchdog programming has memory overhead as it requires additional program 
routines or interrupts. This may not be possible with fixed ROM microcontrollers 
and a hardware solution may be required. Likewise, in real time operating systems 
(RTOS), interrupts or software-based polling may not be possible due to their effect 
on program functionality. One simple hardware solution is to monitor lines that are 
known to change frequently, such as the lowest order address or data line, and use 
this for the watchdog polling line (Figure 8.2). The biggest problem here is ensuring 
that these lines will always change with variable code and within the watchdog 
timing regime. The advantage of hardware is that it requires no programming, 
therefore less memory. The disadvantage is the increase in component count to 
implement the function. It is most likely to cost more to implement the watchdog 
function in software than in hardware, but code is generally the best implementation, 
especially as a crashed program could continue to toggle the lines a hardware-based 
watchdog system is monitoring. 
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Figure 8.2 
Hardware-generated watchdog interrupt 
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The most effective reset coding for a watchdog timer is to dedicate an output pin of the 
microprocessor to the watchdog (Figure 8.3). This pin should be set and cleared 
alternately as the program routines are executed (Figure 8.4). By using an AC coupled 
watchdog set and reset, if the code loops within a single routine that includes a watchdog 
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set command, the watchdog is still effective and this single port condition status will 
operate the reset. This effectively doubles the robustness of the watchdog with only a 
small code overhead (alternating port set and port clear commands). 
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Figure 8.3 
AC coupled watchdog circuit 

Figure 8.4 
Watchdog set/reset routines 
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8.1.2 Refresh Port Connections 
The data direction registers and the input/output port data registers are usually 
located near the edge of the processor's package if included in the microprocessor 
and may be connected directly to the external circuits. Consequently, these are highly 
likely to have noise on their lines. A simple way of minimising this noise disturbing 
the data settings and propagating into the microprocessor integrated circuit (IC) or 
system is to refresh these registers regularly. 

The action of the microprocessor rewriting these data registers stabilises the interfaced 
circuits and minimises the risk that noise on these ports is corrupting other internal 
registers. This is a simple task to perform regularly and involves minimal programming 
overhead, just occasional write commands to the ports and data registers. 

Some care does need exercising to ensure that writing the port status is appropriate 
to the program activity at each re-write command. It can not be assumed that the 
value in the port status is the correct setting so a read and then re-write could result 
in enforcing an erroneous setting. 

8.1.3 Polling Interface Ports (Oversampling) 
Input and output to interfaced functions usually occurs at a much slower rate than the 
microprocessor clock. This enables the microprocessor to poll these pins several 
times to ensure that either the level is set for an output or that the incoming signal is 
stable. This is analogous with the types of oversampling used in digital audio circuits 
(e.g. CD players). 

The microprocessor can be programmed with an oversampling scheme, either to 
ignore the first and last and take the mean of a middle sample for instance, or simple 
average. The actual scheme for polling can be left to the programmer and will 
depend on the type of interface being addressed (e.g. audio, keyboard, serial data 
link) and the processing rate. 

This type of programming has a major software and run time overhead as it requires 
several repeats of an operation plus usually some mathematical interpretation. The 
result is an improved immunity to noisy input signals and less susceptible output 
ports. This may best be implemented using a dedicated input/output microcontroller 
with this type of software programmed on-chip rather than as an auxiliary program 
for a main processor. 

Dedicated input/output interface controllers are quite popular in larger systems hence 
adding local code to improve the immunity should be relatively easy. The same code 
could then be used for any system with that type of interface controller making the 
immunity improvement portable to other systems. 

8.1.4 Token Passing 
Token passing is a deliberate method of ensuring the program is progressing in a 
controlled manner and has not been jumped into due to a code corruption. This 
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requires additional programming steps at each critical subroutine or program block 
within the final program. 

Token passing requires a token (value) to be either updated in memory or in a 
register. As each routine is called it checks to ensure that the call is from the previous 
set of code by comparing the token with a programmed value or memory location. If 
a jump has occurred prematurely the token will not be set correctly, likewise if the 
call has come from a random corruption the token will be in the wrong state. On the 
discovery of a wrong token a reset routine is initiated. 

The advantages of token passing over other methods are that the program 
continuously looks for errors rather than waits for an error to occur and the token itself 
can be used to reset to a predefined location in the program. It may not be necessary 
to completely reset the system depending on the location of the error and the token 
value, this obviously saves program time but also gives a genuine level of immunity 
rather than a simple reset on error recovery. The extra programming overhead is in 
adding the compare program to the start of each sub-routine and the token update to 
the end, plus any error handling software control if system reset is to be avoided. 

Code 

... 

:sub21 

LDA 

LDB 

CMP 

BNE 

XXX 

... 

XXX 

LDA 

INC 

STA 

Comment 

start of sub routine 

&token load accumulator with token 

&value load correct token value 

compare token and value 

#reset jump to reset routine if token incorrect 

otherwise proceed with program 

&token load token 

increment token value for next routine 

&token save token 

:end sub21 end of sub routine program m 

... 

If attempting to use the token passing technique to recover to a known program 
position more programming effort will be required and probably several tokens to 
ensure register and flag conditions are suitable for re-entry into areas of code Using 
the token value alone is insufficient to reset routines where register or memory writes 
have occurred as these will most likely be incorrectly set. 

8.1.5 Unused Memory Addresses 
In most applications it is impossible to exactly fill all memory locations, either ROM 
or RAM. These locations could be accessed due to a software or hardware addressing 
error caused by a corrupted code. These unused memory locations should therefore 
have a known operation placed in them, usually either a no operation (NOP) or an 
unconditional jump to a reset routine (JMP RESET). 
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Address Code 

0000 XXX 

... 

00 FA XXX 

00FB NOP 

00FC NOP 

�9 . . 

010F JMP RESET 

0110 XXX 

�9 . . 

Comment 

functional program area 

end of program area 

start of unused memory block 

jump to reset routine 

functional program area 

Where blocks of memory are unused, the jump to reset should be at the bottom of the 
memory with no operation commands above. These blocks may be scattered about the 
ROM/RAM locations and need to be carefully mapped if this type of feature is to be used. 

Writing these areas will be required by the initialisation program if they are in RAM 
locations. There is of course the possibility that a corrupted write code could rewrite 
these NOP instructions in the RAM space, similarly with the program itself, but it is 
impossible to program for all eventualities and a reasonable trade between 
effectiveness and efficiency of programming has to be drawn. 

This technique requires only a small amount of additional programming to the start- 
up (boot) routine and should not require any run-time program overhead. 

8.1.6 Code Ghosting 
This is one of the most memory intensive and possibly expensive techniques, usually 
reserved for fault tolerant software. The technique requires each code or data value 
to be stored in two parallel locations (either in identical or in complement form). The 
code or data are then compared with their ghost value prior to use. 

The potential for electromagnetic interference (EMI) causing both codes to be 
corrupted is extremely low; however, the microprocessor still has no way of knowing 
which of the two codes is correct and which corrupt. The microprocessor would have 
to handle a code mismatch by reloading to check if the error was in the load 
operation or abort to a known routine if the error is in the stored memory values. 

Code 

... 

: sub32 

LDA 

LDB 

CMP 

BNE 

XXX 

... 

Comment 

&code 

&ghost 

#error 

start of sub routine 

load accumulator with code value 

load ghost value 

compare value and ghost 

jump to error routine if values do not match 

otherwise proceed with program 

This method is a hardware implementation of the oversampling technique and could 
be extended if necessary, although at some cost if there is a lot of code (i.e. three or 
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four copies could be used for comparison). If multiple ghost values are used a 
mathematical method of selecting the correct value could be applied (e.g. numerical 
digital average of each bit). The method can also be selectively applied to code or 
data values from a known problematic location or EMC critical area of the system or 
program. 

8.1.7 Other Techniques 
There are other techniques that are more specific to the hardware being used and the 
best methods of operating interfaces and associated circuits. For example the 
interface with a tristate setting mentioned in the first part of this section. If a setting 
of the port from logical outputs to inputs causes a large switch in internal states of 
an IC, resulting in a large current demand, but an intermediate state is available that 
has only a fraction of the transient current demand when switched (Figure 8.5). 
Using the intermediate state between transitions requires only one additional code 
instruction and will reduce transient supply demand and hence conducted noise 
levels. 
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Figure 8.5 
Effect of port status changes on supply current 

The intermediate state transition technique may be applicable to other circuits, such 
as clearing selective flags prior to rewriting may save the number of actual data or 
address lines driven and therefore again reduce transient demand. Actual transient 
savings in many circuits will be negligible and the idea is best reserved for those 
functions which are known to require larger current supply (e.g. line drivers, 
interface circuits and bi-directional ports). 

Another technique that can help with interfaces is to use a coding scheme, such as 
Manchester coding, which has only a few frequencies in the transmission. In 
Manchester coding only two frequencies are used, a '1' is indicated by a single 
transition and a '0' by a double transition within the clock cycle (Figure 8.6). The 
signal is therefore always changing state, hence a latched condition or end of 
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transmission are also easy to detect. The receiving circuit can potentially determine 
if the sender is experiencing EMC problems. With standard non-return to zero (NRZ) 
coding the frequencies present in the transmission can be from the clock frequency 
to whatever the maximum bit code length period is (i.e. 1/8 the clock frequency for 
an eight-bit code, Figure 8.7). 

Bitstream Frequency 
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'1' stream f~k 

'0' stream 

Figure 8.6 
Manchester code 
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Manchester coding makes filtering easier, if required, and allows for a simpler 
method of triggering on levels rather than edges that will also improve immunity. 
The clock of the transmission circuit is derivable from the signal hence, using a fixed 
offset delay, a level triggered receive circuit is easy to implement in either software 
(using a delay routine) or in hardware (using a delay line). 

Converting standard edge triggered circuits to level triggered is possible at specific 
ports by using a software code delay to allow the value to settle prior to reading. The 
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8-bit NRZ Code: transmission frequency = fclk 
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Figure 8.7 
NRZ coding 
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8-bit NRZ Code: transmission frequency = fcik/8 
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length of delay will depend on the function, but should allow the ringing or 
overshoot to settle and consequently not affect the value read at the port (Figure 8.8), 
a typical settling time should be 10% of the maximum clock period. This can also be 
implemented in hardware using a delayed latch trigger with the data ready signal 
coming from the delayed latch set condition (Figure 8.9). 

Figure 8.8 
Software delayed port read 
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Figure 8.9 
Hardware delayed signal 
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8.2 Design Software 

Software tools for design for EMC tends to fall into two distinct categories of program, 
one is the simulator the other the advisor. The simulator attempts to predict precise 
values of field or conducted noise at any chosen point in a circuit system or structure. 
The advisor usually consists of a knowledge base and is applied to an otherwise 
complete design to check its compliance with the rules of the knowledge base. 

The effectiveness of the software is difficult to gauge accurately without comparison 
with measured results and unfortunately little comparative testing with finished 
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circuits is recorded. Most of the packages currently available concentrate on the 
physical side of circuit design, being concerned with the dimensional construction of 
PCBs and component packages. To date simulation of circuit behaviour and 
component performance is still performed where possible on existing standard 
circuit simulators (e.g. SPICE). 

8.2.1 PCB Design Software 
PCB design software is available from a bewildering number of suppliers with a long 
list of various features of each package to differentiate it from its rivals. This is 
usually one area of design that is almost exclusively done by computer, even the 
simplest of circuits, designed on the back of an envelope, bread boarded rather than 
simulated, is still usually laid out for production in a PCB design package. 

The PCB design software does allow the designer to control more of the EMC 
performance than component selection, as the designer can choose the dimensions of 
interconnect, the number of layers present and their use. One feature that is now 
prevalent on PCB design packages that is a potential problem for EMC is the auto- 
router. The PCB design software does not necessarily know which are the fastest 
signals and therefore which require priority in the layout, consequently initial clock 
and high speed tracking may have to be done manually with the auto-router used 
only for the bias components, low speed and DC tracks. 

The major thrust for advisor type software for EMC is in the area of PCB design and 
these can often operate on prelaid designs and give an indication of likely problem 

Figure 8.10 
EMC Advisor Analysis Software System from Zuken-Redac 
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areas. Often the advisor may need some considerable input from the user to establish 
some rules of layout specific to the user's applications. The amount of input can be 
tedious and many advisor programs are little more than an additional design rule 
checker (DRC) added to the existing DRC program. In fact if your PCB software has 
an edit function for its DRC it is possible to create your own EMC advisor. 

Simulation software at the PCB level takes the physical dimensions of the tracks and 
interconnect (again coupled with data on the PCB material, see Appendix B) to 
construct a transmission line model or aerial model for interconnect. This usually then 
requires the component model data to produce some idea of likely delays, propagation 
characteristics, termination values, etc. to predict if the layout will cause functional 
problems (usually determined by signal integrity) or EMC problems. Usually, the 
software is a conventional circuit simulator (electrical for conducted noise and 
electromagnetic (EM) for radiation) and the PCB data are extracted from a PCB 
layout package to produce the relevant interconnect models only. This, therefore, can 
require integration of software packages: a PCB layout package, a PCB interconnect 
model extraction tool, a circuit simulator and EM radiation modelling package. 

As with any simulation the result is only as good as the models allow. In other words 
the data on the PCB characteristics and dimensions have to be accurate for the 
supplier you use. Another problem with this type of simulation is the time required 
for extraction and analysis. Consider a small PCB with 10 ICs in 14-pin packages, 
there are at least 140 interconnections as well as the components to simulate. 
Consequently, these simulation models can usually only be run on the few critical 
interconnects to check integrity and functionality within a reasonable simulation 
time, especially if the radiation is being examined. 

The above simulator arguments generally apply to predicting emissions for which some 
models do exist. The susceptibility is, however, much more difficult, little component 
data are available and the EM software is highly complex for such tasks. In general, the 
assumption that low emission designs offer low susceptibility is usually used. 

8.2.2 Component Simulation Software 
At the component level electrical circuit simulators have been available for a long time 
and several de facto standard packages exist. For electrical simulation of analogue 
circuits SPICE has gained a wide acceptance and many examples of its accuracy exist 
as do many models of passive, discrete and integrated components. Digital circuit 
simulators are also common, but do not lend themselves to encompass the possibility 
of noise analysis for EMC as an analogue simulator does. Consequently, extensions to 
digital circuits to allow them to interface to analogue or mixed mode simulators is now 
a relatively common theme, also digital models in SPICE are available. 

The main problems are that the EMC performance is often outside the normal 
operating range of the components, and hence their model. Some models do exist but 
component packaging models and interconnect (see section on PCB software) also 
have a significant effect on the EMC performance and models for these are not quite 
as common. 
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An area in which component simulation lacks behind PCB simulation is in emissions 
modelling. The component package is not usually within the control of the circuit 
designer, they require the device's function not its package. Consequently, unless the 
component supplier can provide package data (dimensions of tracking and bonding 
as well as electrical parasitics), modelling emissions from components is not feasible 
for a component user. Even the supplier will experience difficulty and the use of any 
model derived would be very limited as few people are attempting this level of 
modelling or have the time or facilities to do so. The EM software that can perform 
this level of modelling is expensive and requires some expertise to operate and a 
significant computing performance from its host platform. 

An emerging modelling standard that will assist in the conducted emissions 
simulation is IBIS (Input/output Buffer Information Specification), which includes 
package electrical parasitic data and rise and fall time information. The device 
models are relatively basic in their functional performance within the IC, but give 
reasonably detailed information of the behaviour of the signals at the pins of the 
device. The models offer one of the best solutions to mixed signal simulations as 
well as offering possible EMC simulation data and without compromising the IC 
manufacturers' circuit details. As with any model there are limitations, and therefore 
due to the simplicity of the model it is unlikely to predict accurately reaction to 
incident phenomena, such as high frequency conducted input noise signals or 
accurately model transients impact behaviour (although some transient absorption 
models are included in some devices) and EM emissions are not modelled. 

8.2.3 Design Software Overview 
There is still a gap between component and PCB design software, although both are 
commonly used by circuit designers, they are considered disparate operations in the 
design cycle. If software is going to be used to predict circuit level EMC 
performance it is going to have to link the component, circuit and PCB information. 

Some software vendors are offering the possibility of taking PCB files and adding 
models to a circuit simulator to model interconnect. There does need to be some 
feedback if the PCB layout is then going to determine which tracks carry the highest 
speed signals, therefore which to prioritise for layout. The simulator link approach 
requires collaboration between simulation and PCB CAD vendors, this is already 
occurring as the ECAD vendor base reduces by merger and acquisition. The main 
drawback with simulator linked PCB layout software is the cost and complexity of 
linking these packages together; each has a primary function which is not necessarily 
compatible with the others'. This applies to both the analogue and digital circuit 
simulators currently available as well as PCB layout packages. 

Another consideration for the ECAD supplier is are designers willing to pay for 
EMC add-ons to their software and are they willing to trust the results? No original 
equipment manufacturer (OEM) would go to market with a product simulation and 
no test data. As testing will still be required the value of a simulation tool will be 
based on a trade-off between convenience, accuracy and of course cost. 
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The value of simulation should be in reducing the design time. This requires the 
correct set of design rules and models within the simulator and the correct 
application to both circuits and systems. As in the early days of analogue and digital 
simulations, the loop closing the simulation versus measured performance still needs 
completing for EM software to enable designers to believe in the results the software 
provides. This is being performed and the software is continually being refined. 
Eventually the simulation will provide adequate information on EMC performance 
and tests will be performed solely as verification rather than an iterative process in 
the design cycle. 

8.2.4 Available Commercial Packages 
The following tables (Tables 8.1-8.4) list some of the available software packages 
aimed at EMC simulation or modelling. There are no doubt others that offer various 
features and new packages are appearing each year. There is no best solution as it 
will depend upon many factors, not least of all the price of the software. 

Table 8.1 Advisor-based software 

Product name 
, ,  

Design Advisor 
Supplier 

Zuken-Redac 
Application 
PCB DRC 

EMC Expert Consultant Seaward Ltd General 
EMC Toolkit Continental Compliance General 

, ,  

UniCAD 
, ,  

UniSolve 
, ,  

PCB DRC 

Table 8.2 Conducted emissions modelling software 

Product name Supplier 

e m  

EMA3D 

EMC Workbench 
EMIT 

Greenfield 2D 

L-Edit/EM 

Maxwell Strata 

Micro Stripes 

Sonnet Software 

Electro Magnetic 
Applications 

Incases 
Altium 

Quantic Laboratories 

Tanner Research 

Ansoft 

Kimberley 
Communication 
Consultants Ltd 

Method 

MOM 

FDTD 

TLM/MOM 
MOM/FDTD 

TLM 

BEM 

Superstar Eagleware 

MOM 

TLM 

Application 
circuits 

semiconductors 
3D structures 

PCB design 
conductors 

signal integrity 
PCB design 
PCB layout 

signal integrity, 
cross-talk 

3S structures 
antennas 

Motive Quad Design TLM PCB layout 
TLM PCB design 
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Table 8.3 Radiated emissions modelling software 
Product name 

ContecRADIA 

Greenfield 3D 

MAFIA 

Maxwell SI 
Eminance 

Supplier 
Contec 

Microelectronics 

Quantic Laboratories 

Computer Systems 
Technologies 

Ansoft 

Method 
Antenna 

Mathematics 

BEM 

FDTD. 

FEM 

Application 
PCB traces, wires 

and structures 
3D structures and 

PCB traces 

3D structures 

3D structures 

Momentum HP-EEsof MOM planar structures 

FEM 

MOM 

MSC/EMAS 

QUIET 

MacNeal-Schwendler 
Corporation 

Quad Design 

3D structures, 
antennas, EMI and 

cross-talk 
Any 2D and 3D 

structures 

Table 8.4 General electromagnetic modelling software 
Product name Supplier 

HFSS HP-EEsof 
Method 

FEM 
Application 
3D structures 

Maxwell Eminence Ansoft FEM 3D structures 
Integrated 

Engineering 
Software 

Vector Fields 

OERSTED BEM 

FEM TOSCA 

time harmonic 
electromagnetic 

fields 
3D structures 

There are many ways to handle EM simulation, the most complex is the finite 
element method (FEM) which is commonly used in mechanical stress design 
software. The EM versions solve Maxwell's equations in space along a grid or mesh 
either defined by the user or by the software. FEM is arguably the most accurate 
method but also the most computationally intensive and the most expensive. FEM 
can be difficult to use but is very versatile and can be applied to almost any 
structure. The boundary element method (BEM) is similar but deals with boundary 
and space conditions rather than within finite elements of a grid, it is therefore a 
little faster and of similar accuracy to FEM. The transmission line matrix (TLM) is 
one of the faster methods that attempts to create two- or three-dimensional 
transmission lines in space and calculate fields at various points based on 
transmission line equations. The TLM method is fast but not as accurate as B EM or 
FEM for radiated emissions. 

Other methods exist for solving the radiated fields or conducted noise within circuits 
and structures. They all offer some feature that makes them different from the next, 
but usually each has a trade-off in speed, price, accuracy and versatility. Although 
FEM seems the 'best' solution, there are certain applications where the other 
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techniques can yield results of similar accuracy with faster computation times and at 
a lower cost in both software and in time spent on the model construction. For 
arbitrary geometries and non-linear materials FEM may be the only suitable method. 
As with any simulator, their accuracy ultimately lies with the accuracy of the models 
contained within the software or constructed by the user. 

A list of the software vendor addresses is given in Appendix C. 




